1,012 research outputs found

    Duality Cascade and Oblique Phases in Non-Commutative Open String Theory

    Get PDF
    We investigate the complete phase diagram of the decoupled world-sheet theory of (P,Q) strings. These theories include 1+1 dimensional super Yang-Mills theory and non-commutative open string theory. We find that the system exhibits a rich fractal phase structure, including a cascade of alternating supergravity, gauge theory, and matrix string theory phases. The cascade proceeds via a series of SL(2,Z) S-duality transformations, and depends sensitively on P and Q. In particular, we find that the system may undergo multiple Hagedorn-type transitions as the temperature is varied.Comment: 21 pages, 4 figures, references adde

    A Note on Warped String Compactification

    Full text link
    We give a short review of a large class of warped string geometries, obtained via F-theory compactified on Calabi-Yau fourfolds, that upon reduction to 5 dimensions give consistent supersymmetric realizations of the RS compactification scenario.Comment: 11 pages, 3 figures; v3 corrected spelling of Calab

    Quantum Black Hole Evaporation

    Full text link
    We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to derive some algebraic properties of the scattering matrix and prove that the final state contains all initial information.Comment: 37 pages (figs 2 and 3 included as uuencoded compressed tar file), Latex, needs epsf.tex, PUPT-1395, IASSNS-HEP-93/25 (revised version has minor corrections, one reference added

    2D Black Hole and Holographic Renormalization Group

    Get PDF
    In hep-th/0311177, the Large NN renormalization group (RG) flows of a modified matrix quantum mechanics on a circle, capable of capturing effects of nonsingets, were shown to have fixed points with negative specific heat. The corresponding rescaling equation of the compactified matter field with respect to the RG scale, identified with the Liouville direction, is used to extract the two dimensional Euclidean black hole metric at the new type of fixed points. Interpreting the large NN RG flows as flow velocities in holographic RG in two dimensions, the flow equation of the matter field around the black hole fixed point is shown to be of the same form as the radial evolution equation of the appropriate bulk scalar coupled to 2D black hole.Comment: 21 page

    Entropic gravity, minimum temperature, and modified Newtonian dynamics

    Full text link
    Verlinde's heuristic argument for the interpretation of the standard Newtonian gravitational force as an entropic force is generalized by the introduction of a minimum temperature (or maximum wave length) for the microscopic degrees of freedom on the holographic screen. With the simplest possible setup, the resulting gravitational acceleration felt by a test mass m from a point mass M at a distance R is found to be of the form of the modified Newtonian dynamics (MOND) as suggested by Milgrom. The corresponding MOND-type acceleration constant is proportional to the minimum temperature, which can be interpreted as the Unruh temperature of an emerging de-Sitter space. This provides a possible explanation of the connection between local MOND-type two-body systems and cosmology.Comment: 12 pages, v6: published versio

    Black Hole Horizons and Complementarity

    Get PDF
    We investigate the effect of gravitational back-reaction on the black hole evaporation process. The standard derivation of Hawking radiation is re-examined and extended by including gravitational interactions between the infalling matter and the outgoing radiation. We find that these interactions lead to substantial effects. In particular, as seen by an outside observer, they lead to a fast growing uncertainty in the position of the infalling matter as it approaches the horizon. We argue that this result supports the idea of black hole complementarity, which states that, in the description of the black hole system appropriate to outside observers, the region behind the horizon does not establish itself as a classical region of space-time. We also give a new formulation of this complementarity principle, which does not make any specific reference to the location of the black hole horizon.Comment: Some minor modifications in text and the title chang

    On RG-flow and the Cosmological Constant

    Get PDF
    The AdS/CFT correspondence implies that the effective action of certain strongly coupled large NN gauge theories satisfy the Hamilton-Jacobi equation of 5d gravity. Using an analogy with the relativistic point particle, I construct a low energy effective action that includes the Einstein action and obeys a Callan-Symanzik-type RG-flow equation. It follows from the flow equation that under quite general conditions the Einstein equations admit a flat space-time solution, but other solutions with non-zero cosmological constant are also allowed. I discuss the geometric interpretation of this result in the context of warped compactifications.Comment: 11 pages, 1 figure, contribution to the proceedings of Strings '99, misprint correcte

    Loop and surface operators in N=2 gauge theory and Liouville modular geometry

    Get PDF
    Recently, a duality between Liouville theory and four dimensional N=2 gauge theory has been uncovered by some of the authors. We consider the role of extended objects in gauge theory, surface operators and line operators, under this correspondence. We map such objects to specific operators in Liouville theory. We employ this connection to compute the expectation value of general supersymmetric 't Hooft-Wilson line operators in a variety of N=2 gauge theories.Comment: 60 pages, 11 figures; v3: further minor corrections, published versio

    Topological Dilatonic Supergravity Theories

    Full text link
    We present a central extension of the (m,n)(m,n) super-Poincar\'e algebra in two dimensions. Besides the usual Poincar\'e generators and the (m,n)(m,n) supersymmetry generators we have (m,n)(m,n) Grassmann generators, a bosonic internal symmetry generator and a central charge. We then build up the topological gauge theory associated to this algebra. We can solve the classical field equations for the fields which do not belong to the supergravity multiplet and to a Lagrange multiplier multiplet. The resulting topological supergravity theory turns out to be non-local in the fermionic sector.Comment: 11 pages, plain TeX, IFUSP-P/112
    corecore